skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arefeen, Yamin I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 10, 2026
  2. Abstract PurposeTo examine the effect of incorporating self‐supervised denoising as a pre‐processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K‐space data employed for training are typically multi‐coil and inherently noisy. Although DL‐based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise‐free datasets is impractical. MethodsWe leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL‐based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model‐Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL‐based methods in solving accelerated multi‐coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2‐weighted brain and fat‐suppressed proton‐density knee scans. ResultsWe observed that self‐supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal‐to‐noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2‐weighted brain data, and 24, 14, and 4 dB for fat‐suppressed knee data. ConclusionWe showed that denoising is an essential pre‐processing technique capable of improving the efficacy of DL‐based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise‐free reference MRI scans. 
    more » « less
    Free, publicly-accessible full text available June 2, 2026
  3. Free, publicly-accessible full text available May 10, 2026
  4. Motivation: Publicly available k-space data used for training are inherently noisy with no available ground truth. Goal(s): To denoise k-space data in an unsupervised manner for downstream applications. Approach: We use Generalized Stein’s Unbiased Risk Estimate (GSURE) applied to multi-coil MRI to denoise images without access to ground truth. Subsequently, we train a generative model to show improved accelerated MRI reconstruction. Results: We demonstrate: (1) GSURE can successfully remove noise from k-space; (2) generative priors learned on GSURE-denoised samples produce realistic synthetic samples; and (3) reconstruction performance on subsampled MRI improves using priors trained on denoised images in comparison to training on noisy samples. Impact: This abstract shows that we can denoise multi-coil data without ground truth and train deep generative models directly on noisy k-space in an unsupervised manner, for improved accelerated reconstruction. 
    more » « less